
HOMEWORK 7

Due date: Next Monday.
Exercises: 1, 8, 9, 12, pages 105-107
Exercises: 1, 3, page 111
Exercises: 1, 3, 4, 6, 7, 8, pages 115-116.

You can do Problems 1, 2 and 3 using what you learned from last week.

Problem 1. Given two matrices A,B ∈ Matm×n(F ). Show that rank(A+B) ≤ rank(A)+rank(B).

Hint: Translate this problem to a problem on linear maps. You might find the following fact
useful: Given two linear maps T, S : V → W , then ker(T ) ∩ ker(S) ⊂ ker(T + S) (check this).

Problem 2. Given two matrices A,B ∈ Matn×n(F ). If AB = 0, show that rank(A)+rank(B) ≤ n.

This follows from Sylverster’s rank inequality (Problem 3, HW6). But it is a good exercise to prove
this directly (without going through the whole proof of Sylverster, because this problem is much
easier.) Hint: Think about what can you say about Im(TB) and Ker(TA). (As usual: TA denotes
the linear map Fn → Fn given by TA(X) = AX. Here elements in Fn are viewed as column vectors.)

Problem 3. Let F be a fixed field and n be a positive integer. Denote by I ∈ Matn×n(F ) the identity
n× n matrix. Given A,B ∈ Matn×n(F ).

(1) Show that
rank(A−ABA) = rank(A) + rank(I −BA)− n.

(2) Show that
rank(I −AB) = rank(I −BA).

Hint: The equation A−ABA = A(I −BA) = (I −AB)A might be useful.

Problem 4. Denote α = 3
√
2. Consider F =

{
a+ bα+ cα2|a, b, c ∈ Q

}
. We know that F is a field

and it is also a vector space over Q of dimension 3 from previous HW. We view it as a Q-vector
space.

(1) Given x = a + bα + cα2 ∈ F and the linear map Tx : F → F given by Tx(y) = xy. It is
not hard to see Tx is well-defined and Q-linear. Here “well-defined” means Tx(y) ∈ F for
y ∈ F . Suppose that x ̸= 0. Show that Tx is injective and conclude that there exists a y ∈ F
such that xy = 1.

(2) Fix an ordered basis B of F (as a Q vector space) and compute the matrix [Tx]B of Tx with
respect to the basis you chose.

(3) Show that [Tx]B is invertible.
(4) Do a higher dimensional analogue of this. For example, given a matrix A ∈ Mat2×2(F ), and

consider the linear map TA : F 2 → F 2. View F 2 as a Q-vector space and choose a basis B′

of F 2 over Q. Then compute [TA]B′ ∈ Mat6×6(Q) explicitly in terms of entries of A. Show
that if A is invertible as an element of Mat2×2(F ) then [TA]B is invertible as an element of
Mat6×6(Q).

Exercise 16 page 107 gives a “coordinate free” definition of trace of a square matrix. Please keep
in mind this assertion. In Chapter 5, we will see a “coordinate free” definition of determinant.

Problem 5. Let F be a field and let V = Matn×n(F ), which is an F -vector space of dimension
n2. We consider the trace map Tr : V → F . Let W be the subspace of V which is spanned by the
matrices of the form AB − BA for A,B ∈ V . Then we know that W ⊂ ker(Tr). This space W is
exactly the one in Ex 17, page 107.
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(1) Show that Tr : V → F is surjective and conclude that dimker(Tr) = n2 − 1.
(2) Show that dimW = n2 − 1 by explicitly constructing enough linearly independent elements

in W . Conclude that W = ker(Tr).
(3) Show that a linear functional f : V → F such that f(AB) = f(BA) for all A,B ∈ F is

exactly an element in HomF (V/W,F ). Conclude that such an f must be of the form cTr for
some c ∈ F .

Hint for part (2). We expect that W = Ker(tr). Try to find a natural basis of ker(tr) (if you still
have no idea, try to think about the 2× 2 matrices and then 3× 3 matrices), and then try to show
that they are indeed in W .

Problem 6. Given V,W ∈ VectF such that dimV,dimW are finite. Let T : W → V be a linear
operator.

(1) Given a linear functional f ∈ W ∗ such that f |ker(T ) = 0, show that there exists a linear
functional g ∈ V ∗ such that g(T (α)) = f(α) for any α ∈ W .

(2) If T is injective, conclude that T t is surjective.

Part (1) is a variant/generalization of Ex 12, page 106.

Problem 7. Let V,W be two finite dimensional vector spaces over F . Suppose dimF V = n,dimF W =
m.

(1) Show that the map θ : HomF (V,W ) → HomF (W
∗, V ∗) defined by θ(T ) = T t is an isomor-

phism.
(2) Conclude that there is an isomorphism Hom(V,W ) → (V ∗)m. Construct this isomorphism

explicitly.

(Comment: Part (1) is a generalization of Ex. 7, page 116. )
We can prove the assertion in part (2) of the above problem even we drop the condition that

dimV is finite.

Problem 8. Given two F -vector spaces V,W with dimF W = m. We don’t require dimF V is finite.
Let {β1, . . . , βm} be a basis of W and let S = {f1, . . . , fm} be the dual basis of W ∗. Consider the
map

θS : Hom(V,W ) → (V ∗)m,

θS(T ) = (T t(f1), . . . , T
t(fm)).

Show that θS is an isomorphism.

(Hint: The proof is not hard.) The above assertion slightly generalizes Ex.6 page 105. Actually
Exercise 6 of page 105 gives an inverse map of the one defined above (for a specific choice of S). Try
to explain this. Moreover, compare the result in Problem 6 with Problem 1 of HW6.

Let V be a vector space over a field F such that dimF V = n is finite. We know that V
is isomorphic to V ∗ since both of them have the same dimension. But this isomorphism is not
“canonical”. On the other hand, the isomorphism V → V ∗∗ given by α 7→ Lα is “canonical”. The
next problem is trying to give you a feeling what the word “canonical” means here.

Problem 9. Let V be a finite dimensional vector space and consider the map

ΘV : V → V ∗∗

defined by ΘV (α) = Lα, where Lα : V ∗ → F is defined by Lα(f) = f(α), f ∈ V ∗. Let T : V → W
be a linear map such that both V and W are finite dimensional. Show that the following diagram is
commutative

V W

V ∗∗ W ∗∗.

T

ΘV ΘW

(T t)t

Namely, show that (T t)t ◦ΘV = ΘW ◦ T .
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Problem 10. Let F be a field and consider the vector space V = Fn for a positive integer n. An
element of V is viewed as a row vector. Let m, k be positive integers.

(1) For α = (x1, . . . , xn) ∈ V , define fα ∈ V ∗ by fα((y1, . . . , yn)) = x1y1+ · · ·+xnyn. The map
f : V → V ∗, α 7→ fα is known to be linear. Show that f is an isomorphism. (You don’t have
to check that fα ∈ V ∗ and α 7→ fα is linear).

(2) Let A ∈ Matm×n(F ) and let Row(A) ⊂ V be the row space of A (subspace of V spanned
by rows of A). Show that α ∈ Ker(A) if and only if fα ∈ Ann(Row(A)). Here Ker(A) =
{α ∈ V : Aα = 0.} (In the equation Aα = 0, α is identified with a column vector).

(3) Let A ∈ Matm×n(F ) and B ∈ Matk×n(F ) be two matrices. Show that Ker(A) = Ker(B) if
and only if Row(A) = Row(B).

Note that part (3) shows that two homogeneous linear systems AX = 0 and BX = 0 have the
same solutions iff they are equivalent. Here “equivalence” is defined in page 4 of the textbook.


