HOMEWORK 7

Due date: Next Monday.
Exercises: 1, 8, 9, 12, pages 105-107
Exercises: 1, 3, page 111
Exercises: 1, 3, 4, 6, 7, 8, pages 115-116.

You can do Problems 1, 2 and 3 using what you learned from last week.
Problem 1. Given two matrices A, B € Maty, xn(F'). Show that rank(A+ B) < rank(A)+rank(B).

Hint: Translate this problem to a problem on linear maps. You might find the following fact
useful: Given two linear maps T, S : V' — W, then ker(T") Nker(S) C ker(T + S) (check this).

Problem 2. Given two matrices A, B € Maty, «xn(F). If AB = 0, show that rank(A) +rank(B) < n.

This follows from Sylverster’s rank inequality (Problem 3, HW6). But it is a good exercise to prove
this directly (without going through the whole proof of Sylverster, because this problem is much
easier.) Hint: Think about what can you say about Im(7z) and Ker(T4). (As usual: T4 denotes
the linear map F™ — F™ given by T'4(X) = AX. Here elements in F™ are viewed as column vectors.)

Problem 3. Let F be a fized field and n be a positive integer. Denote by I € Mat, «,,(F) the identity
n X n matriz. Given A, B € Mat,xn(F).

(1) Show that
rank(A — ABA) = rank(A) + rank(I — BA) — n.
(2) Show that
rank(I — AB) = rank(] — BA).

Hint: The equation A — ABA = A(I — BA) = (I — AB)A might be useful.

Problem 4. Denote a = /2. Consider F = {a + ba + ca2|a, b,c € (@} We know that F is a field
and it is also a vector space over Q of dimension 3 from previous HW. We view it as a Q-vector
space.

(1) Given x = a + ba + ca® € F and the linear map Ty, : F — F given by Ty (y) = zy. It is
not hard to see T, is well-defined and Q-linear. Here “well-defined” means T, (y) € F for
y € F. Suppose that x # 0. Show that T, is injective and conclude that there exists a y € F
such that xy = 1.

(2) Fiz an ordered basis B of F (as a Q vector space) and compute the matriz [Ty)p of T, with
respect to the basis you chose.

(3) Show that [T;)p is invertible.

(4) Do a higher dimensional analogue of this. For example, given a matriz A € Matayo(F'), and
consider the linear map Ty : F? — F2. View F? as a Q-vector space and choose a basis B’
of F% over Q. Then compute [Talg € Matexs(Q) explicitly in terms of entries of A. Show
that if A is invertible as an element of Matayo(F) then [Ta]p is invertible as an element of
Matgx6(Q)-

Exercise 16 page 107 gives a “coordinate free” definition of trace of a square matrix. Please keep
in mind this assertion. In Chapter 5, we will see a “coordinate free” definition of determinant.

Problem 5. Let F be a field and let V. = Mat,,xn(F'), which is an F-vector space of dimension
n?. We consider the trace map Tr : V. — F. Let W be the subspace of V which is spanned by the
matrices of the form AB — BA for A,B € V. Then we know that W C ker(Tr). This space W is
exactly the one in Ex 17, page 107.
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(1) Show that Tr : V — F is surjective and conclude that dim ker(Tr) = n? — 1.

(2) Show that dim W = n? — 1 by eaplicitly constructing enough linearly independent elements
in W. Conclude that W = ker(Tr).

(3) Show that a linear functional f : V. — F such that f(AB) = f(BA) for all A,B € F s
exactly an element in Homp(V/W, F). Conclude that such an f must be of the form cTr for
some c € F.

Hint for part (2). We expect that W = Ker(tr). Try to find a natural basis of ker(tr) (if you still
have no idea, try to think about the 2 x 2 matrices and then 3 x 3 matrices), and then try to show
that they are indeed in W.

Problem 6. Given VW € Vectp such that dimV,dim W are finite. Let T : W — V be a linear
operator.

(1) Given a linear functional f € W* such that f|er¢ry = 0, show that there exists a linear
functional g € V* such that g(T(c)) = f() for any o € W.
(2) If T is injective, conclude that T* is surjective.

Part (1) is a variant/generalization of Ex 12, page 106.

Problem 7. Let V,W be two finite dimensional vector spaces over F'. Suppose dimp V = n,dimp W =
m.
(1) Show that the map 0 : Homp(V, W) — Homp(W*,V*) defined by 0(T) = T* is an isomor-
phism.
(2) Conclude that there is an isomorphism Hom(V, W) — (V*)™. Construct this isomorphism
explicitly.

(Comment: Part (1) is a generalization of Ex. 7, page 116. )
We can prove the assertion in part (2) of the above problem even we drop the condition that
dim V' is finite.

Problem 8. Given two F-vector spaces V,W with dimp W = m. We don’t require dimp V' is finite.
Let {B1,...,Bm} be a basis of W and let S = {f1,..., fm} be the dual basis of W*. Consider the
map
0s : Hom(V, W) — (V*)™,
0s(T) = (T"(f1)s-- - T"(fm))-

Show that Og is an isomorphism.

(Hint: The proof is not hard.) The above assertion slightly generalizes Ex.6 page 105. Actually
Exercise 6 of page 105 gives an inverse map of the one defined above (for a specific choice of S). Try
to explain this. Moreover, compare the result in Problem 6 with Problem 1 of HW6.

Let V be a vector space over a field F' such that dimp V = n is finite. We know that V
is isomorphic to V* since both of them have the same dimension. But this isomorphism is not
“canonical”. On the other hand, the isomorphism V' — V** given by o +— L, is “canonical”. The
next problem is trying to give you a feeling what the word “canonical” means here.

Problem 9. Let V' be a finite dimensional vector space and consider the map
@V ) VA

defined by Oy (a) = Ly, where Ly, : V* — F is defined by Lo(f) = f(a),f € V*. LetT : V - W
be a linear map such that both V. and W are finite dimensional. Show that the following diagram is
commutative

V——w
S
V** (Tt)t W**.
Namely, show that (T%)t 0 Oy = Oy o T.
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Problem 10. Let F be a field and consider the vector space V.= F™ for a positive integer n. An
element of V is viewed as a row vector. Let m,k be positive integers.

(1) For a = (x1,...,2,) €V, define fo € V= by fo((y1,---3yn)) =191+ +Xpnyn. The map
f:V = V* a f, is known to be linear. Show that f is an isomorphism. (You don’t have
to check that fo, € V* and a — fq is linear).

(2) Let A € Maty,xn(F) and let Row(A) C V be the row space of A (subspace of V' spanned
by rows of A). Show that a € Ker(A) if and only if fo € Ann(Row(A)). Here Ker(A) =
{a €V :Aa=0.} (In the equation Ao = 0, « is identified with a column vector).

(3) Let A € Maty,xn(F) and B € Matyxn(F) be two matrices. Show that Ker(A) = Ker(B) if
and only if Row(A) = Row(B).

Note that part (3) shows that two homogeneous linear systems AX = 0 and BX = 0 have the
same solutions iff they are equivalent. Here “equivalence” is defined in page 4 of the textbook.



