HOMEWORK 7

Due date: Next Monday.

Exercises: 1, 8, 9, 12, pages 105-107

Exercises: 1, 3, page 111

Exercises: 1, 3, 4, 6, 7, 8, pages 115-116.

You can do Problems 1, 2 and 3 using what you learned from last week.

Problem 1. Given two matrices $A, B \in \operatorname{Mat}_{m \times n}(F)$. Show that $\operatorname{rank}(A+B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$.

Hint: Translate this problem to a problem on linear maps. You might find the following fact useful: Given two linear maps $T, S : V \to W$, then $\ker(T) \cap \ker(S) \subset \ker(T+S)$ (check this).

Problem 2. Given two matrices $A, B \in \operatorname{Mat}_{n \times n}(F)$. If AB = 0, show that $\operatorname{rank}(A) + \operatorname{rank}(B) \leq n$.

This follows from Sylverster's rank inequality (Problem 3, HW6). But it is a good exercise to prove this directly (without going through the whole proof of Sylverster, because this problem is much easier.) Hint: Think about what can you say about $\text{Im}(T_B)$ and $\text{Ker}(T_A)$. (As usual: T_A denotes the linear map $F^n \to F^n$ given by $T_A(X) = AX$. Here elements in F^n are viewed as column vectors.)

Problem 3. Let F be a fixed field and n be a positive integer. Denote by $I \in \operatorname{Mat}_{n \times n}(F)$ the identity $n \times n$ matrix. Given $A, B \in \operatorname{Mat}_{n \times n}(F)$.

(1) Show that

$$rank(A - ABA) = rank(A) + rank(I - BA) - n.$$

(2) Show that

$$rank(I - AB) = rank(I - BA).$$

Hint: The equation A - ABA = A(I - BA) = (I - AB)A might be useful.

Problem 4. Denote $\alpha = \sqrt[3]{2}$. Consider $F = \{a + b\alpha + c\alpha^2 | a, b, c \in \mathbb{Q}\}$. We know that F is a field and it is also a vector space over \mathbb{Q} of dimension 3 from previous HW. We view it as a \mathbb{Q} -vector space.

- (1) Given $x = a + b\alpha + c\alpha^2 \in F$ and the linear map $T_x : F \to F$ given by $T_x(y) = xy$. It is not hard to see T_x is well-defined and \mathbb{Q} -linear. Here "well-defined" means $T_x(y) \in F$ for $y \in F$. Suppose that $x \neq 0$. Show that T_x is injective and conclude that there exists a $y \in F$ such that xy = 1.
- (2) Fix an ordered basis \mathcal{B} of F (as a \mathbb{Q} vector space) and compute the matrix $[T_x]_{\mathcal{B}}$ of T_x with respect to the basis you chose.
- (3) Show that $[T_x]_{\mathcal{B}}$ is invertible.
- (4) Do a higher dimensional analogue of this. For example, given a matrix A ∈ Mat_{2×2}(F), and consider the linear map T_A: F² → F². View F² as a ℚ-vector space and choose a basis B' of F² over ℚ. Then compute [T_A]_{B'} ∈ Mat_{6×6}(ℚ) explicitly in terms of entries of A. Show that if A is invertible as an element of Mat_{2×2}(F) then [T_A]_B is invertible as an element of Mat_{6×6}(ℚ).

Exercise 16 page 107 gives a "coordinate free" definition of trace of a square matrix. Please keep in mind this assertion. In Chapter 5, we will see a "coordinate free" definition of determinant.

Problem 5. Let F be a field and let $V = \operatorname{Mat}_{n \times n}(F)$, which is an F-vector space of dimension n^2 . We consider the trace map $\operatorname{Tr}: V \to F$. Let W be the subspace of V which is spanned by the matrices of the form AB - BA for $A, B \in V$. Then we know that $W \subset \ker(\operatorname{Tr})$. This space W is exactly the one in Ex 17, page 107.

1

2 HOMEWORK 7

- (1) Show that $\operatorname{Tr}: V \to F$ is surjective and conclude that $\dim \ker(\operatorname{Tr}) = n^2 1$.
- (2) Show that dim $W = n^2 1$ by explicitly constructing enough linearly independent elements in W. Conclude that $W = \ker(\operatorname{Tr})$.
- (3) Show that a linear functional $f: V \to F$ such that f(AB) = f(BA) for all $A, B \in F$ is exactly an element in $\operatorname{Hom}_F(V/W, F)$. Conclude that such an f must be of the form $c\operatorname{Tr}$ for some $c \in F$.

Hint for part (2). We expect that W = Ker(tr). Try to find a natural basis of ker(tr) (if you still have no idea, try to think about the 2×2 matrices and then 3×3 matrices), and then try to show that they are indeed in W.

Problem 6. Given $V, W \in \text{Vect}_F$ such that $\dim V, \dim W$ are finite. Let $T: W \to V$ be a linear operator.

- (1) Given a linear functional $f \in W^*$ such that $f|_{\ker(T)} = 0$, show that there exists a linear functional $g \in V^*$ such that $g(T(\alpha)) = f(\alpha)$ for any $\alpha \in W$.
- (2) If T is injective, conclude that T^t is surjective.

Part (1) is a variant/generalization of Ex 12, page 106.

Problem 7. Let V, W be two finite dimensional vector spaces over F. Suppose $\dim_F V = n, \dim_F W = m$.

- (1) Show that the map $\theta : \operatorname{Hom}_F(V, W) \to \operatorname{Hom}_F(W^*, V^*)$ defined by $\theta(T) = T^t$ is an isomorphism.
- (2) Conclude that there is an isomorphism $\operatorname{Hom}(V,W) \to (V^*)^m$. Construct this isomorphism explicitly.

(Comment: Part (1) is a generalization of Ex. 7, page 116.)

We can prove the assertion in part (2) of the above problem even we drop the condition that $\dim V$ is finite.

Problem 8. Given two F-vector spaces V, W with $\dim_F W = m$. We don't require $\dim_F V$ is finite. Let $\{\beta_1, \ldots, \beta_m\}$ be a basis of W and let $S = \{f_1, \ldots, f_m\}$ be the dual basis of W^* . Consider the map

$$\theta_S : \operatorname{Hom}(V, W) \to (V^*)^m,$$

 $\theta_S(T) = (T^t(f_1), \dots, T^t(f_m)).$

Show that θ_S is an isomorphism.

(Hint: The proof is not hard.) The above assertion slightly generalizes Ex.6 page 105. Actually Exercise 6 of page 105 gives an inverse map of the one defined above (for a specific choice of S). Try to explain this. Moreover, compare the result in Problem 6 with Problem 1 of HW6.

Let V be a vector space over a field F such that $\dim_F V = n$ is finite. We know that V is isomorphic to V^* since both of them have the same dimension. But this isomorphism is not "canonical". On the other hand, the isomorphism $V \to V^{**}$ given by $\alpha \mapsto L_{\alpha}$ is "canonical". The next problem is trying to give you a feeling what the word "canonical" means here.

Problem 9. Let V be a finite dimensional vector space and consider the map

$$\Theta_V: V \to V^{**}$$

defined by $\Theta_V(\alpha) = L_\alpha$, where $L_\alpha : V^* \to F$ is defined by $L_\alpha(f) = f(\alpha), f \in V^*$. Let $T : V \to W$ be a linear map such that both V and W are finite dimensional. Show that the following diagram is commutative

$$\begin{array}{ccc} V & \xrightarrow{T} & W \\ \downarrow_{\Theta_{V}} & \downarrow_{\Theta_{W}} \\ V^{**} & \xrightarrow{(T^{t})^{t}} & W^{**}. \end{array}$$

Namely, show that $(T^t)^t \circ \Theta_V = \Theta_W \circ T$.

HOMEWORK 7 3

Problem 10. Let F be a field and consider the vector space $V = F^n$ for a positive integer n. An element of V is viewed as a row vector. Let m, k be positive integers.

- (1) For $\alpha = (x_1, \ldots, x_n) \in V$, define $f_{\alpha} \in V^*$ by $f_{\alpha}((y_1, \ldots, y_n)) = x_1 y_1 + \cdots + x_n y_n$. The map $f: V \to V^*, \alpha \mapsto f_{\alpha}$ is known to be linear. Show that f is an isomorphism. (You don't have to check that $f_{\alpha} \in V^*$ and $\alpha \mapsto f_{\alpha}$ is linear).
- (2) Let $A \in \operatorname{Mat}_{m \times n}(F)$ and let $\operatorname{Row}(A) \subset V$ be the row space of A (subspace of V spanned by rows of A). Show that $\alpha \in \operatorname{Ker}(A)$ if and only if $f_{\alpha} \in \operatorname{Ann}(\operatorname{Row}(A))$. Here $\operatorname{Ker}(A) = \{\alpha \in V : A\alpha = 0.\}$ (In the equation $A\alpha = 0$, α is identified with a column vector).
- (3) Let $A \in \operatorname{Mat}_{m \times n}(F)$ and $B \in \operatorname{Mat}_{k \times n}(F)$ be two matrices. Show that $\operatorname{Ker}(A) = \operatorname{Ker}(B)$ if and only if $\operatorname{Row}(A) = \operatorname{Row}(B)$.

Note that part (3) shows that two homogeneous linear systems AX = 0 and BX = 0 have the same solutions iff they are equivalent. Here "equivalence" is defined in page 4 of the textbook.